Polypropylene/Short Glass Fibers Composites: Effects of Coupling Agents on Mechanical Properties, Thermal Behaviors, and Morphology
نویسندگان
چکیده
This study uses the melt compounding method to produce polypropylene (PP)/short glass fibers (SGF) composites. PP serves as matrix while SGF serves as reinforcement. Two coupling agents, maleic anhydride grafted polypropylene, (PP-g-MA) and maleic anhydride grafted styrene-ethylene-butylene-styrene block copolymer (SEBS-g-MA) are incorporated in the PP/SGF composites during the compounding process, in order to improve the interfacial adhesion and create diverse desired properties of the composites. According to the mechanical property evaluations, increasing PP-g-MA as a coupling agent provides the composites with higher tensile, flexural, and impact properties. In contrast, increasing SEBS-g-MA as a coupling agent provides the composites with decreasing tensile and flexural strengths, but also increasing impact strength. The DSC results indicate that using either PP-g-MA or SEBS-g-MA as the coupling agent increases the crystallization temperature. However, the melting temperature of PP barely changes. The spherulitic morphology results show that PP has a smaller spherulite size when it is processed with PP-g-MA or SEBS-g-MA as the coupling agent. The SEM results indicate that SGF is evenly distributed in PP matrices, but there are distinct voids between these two materials, indicating a poor interfacial adhesion. After PP-g-MA or SEBS-g-MA is incorporated, SGF can be encapsulated by PP, and the voids between them are fewer and indistinctive. This indicates that the coupling agents can effectively improve the interfacial compatibility between PP and SGF, and as a result improves the diverse properties of PP/SGF composites.
منابع مشابه
Numerical Simulation of a Hybrid Nanocomposite Containing Ca-CO3 and Short Glass Fibers Subjected to Tensile Loading
The tensile properties of multiscale, hybrid, thermoplastic-based nanocomposites reinforced with nano-CaCO3 particles and micro–short glass fibers (SGF) were predicted by a two-step, three-dimensionalmodel using ANSYS finite element (FE) software. Cylindrical and cuboid representative volume elements were generated to obtain the effective behavior of the multiscale hybrid composites. In the fir...
متن کاملA Numerical Method for the Determination of an Effective Modules for Coated Glass Fibers Used in Phenolic Composites
It is well known that the mechanical properties of fiberglass reinforced "phenolic moulding compounds" are significantly enhanced if the glass particles are coated with silane coupling agents before compounding. It has been shown that improvements obtained by using scanning electron microscopy techniques are due to better bonding of phenolic resin to the surface of treated glass fibers. These o...
متن کاملPolypropylene /Polystyrene in situ nano reinforced blends fiber: Morphology and properties
Polypropylene / polystyrene blends containing montmorillonite (MMT) were prepared using a twin screw extruder followed by fiber spinning. The melt intercalation of PP and PS alloys was carried out in the presence of a compatibilizer such as maleic anhydride-g-polypropylene (MPP). The crystallization morphology, thermal behaviors and mechanical properties of polypropylene/polystyrene (PP/PS) nan...
متن کاملPolypropylene /Polystyrene in situ nano reinforced blends fiber: Morphology and properties
Polypropylene / polystyrene blends containing montmorillonite (MMT) were prepared using a twin screw extruder followed by fiber spinning. The melt intercalation of PP and PS alloys was carried out in the presence of a compatibilizer such as maleic anhydride-g-polypropylene (MPP). The crystallization morphology, thermal behaviors and mechanical properties of polypropylene/polystyrene (PP/PS) nan...
متن کاملFiber reinforced plastic composites using recycled materials
This work investigates the feasibility of using recycled high density polyethylene (rHDPE), recycled polypropylene (rPP) and old newsprint fiber (ONP) to manufacture fiber reinforced composites. The boards were made through air-forming and hot press. The effects of the fiber loading and coupling agent content on tensile, flexural, internal bond properties and water absorption and thickness swel...
متن کامل